
ALBA: a Generic Library for Programming

Mobile Agents with Prolog

Benjamin Devèze, Caroline Chopinaud and Patrick Taillibert

Thales Airborne Systems
2 avenue Gay-Lussac, 78851 Elancourt - France
{firstname.lastname}@fr.thalesgroup.com

Abstract. This paper presents ALBA, a generic library dedicated to the
commissioning of mobile agents written in Prolog. This library offers a
handful of mechanisms for autonomous agents creation, execution, com-
munication and mobility, whose implementation strongly respects the
principles of robustness, decentralization of data, flexibility and generic-
ity. In this perspective, the following paper mainly focuses on ALBA ar-
chitecture and implementation with an emphasis on the technical choices
which were made to provide these essential features. It therefore presents
an innovative migration protocol, a research algorithm of agents solely
identified by their names and exposes some considerations about commu-
nication handling in a fully decentralized environment. It also highlights
some ideas towards a distributed modularity of systems.

1 Introduction

Since the emergence of multiagent systems (MAS), the corresponding research
community has grown considerably and has been hard at work to provide agent
communication standards mainly based on the speech act theory [1]. Important
efforts have been made to formalize the main characteristics of agents, focusing
on agent-oriented languages able to describe the behavior of an intelligent agent.
An abundant literature can be found about MAS related concepts like social
attitudes, organization, cooperation or autonomy.

Unfortunately, the design of practical tools that can effectively support MAS
programming and deployment appears to miss the necessary maturity to be
widely adopted and used for large-scale industrial applications. A remaining gap
persists between theories and concrete implementations that restrains us from
taking the full benefits of this technology.

In order to demonstrate the added-value of the multiagent paradigm and
to convince the remaining sceptic researchers and industrials, it is necessary to
provide efficient programming constructs that facilitate the implementation of
the essential concepts used in MAS. It is now admitted that MAS deal with flex-
ibility, robustness, decentralization, modularity and scalability [18]. This should
be kept in mind when developing new tools in this domain, so as not to alter
these valuable qualities.



Despite the numerous approaches and platforms architectures that have been
proposed for agents commissioning, there is not any general agreement on a par-
ticular method that would combine all the advantages of the agent paradigm.
Platforms are often too centralized and often rely on imperative object-oriented
languages, like Java, for agents implementation, which are not well suited for
this task [15]. It is especially the case for the kind of applications we have in
mind in our group, that could be characterized as an attempt to apply the mul-
tiagent methodology to what is generally called real-time applications built on
multitasked operating systems. These applications, which in our case concern
mission systems embedded in aircrafts (sea or ground surveillance, coordinated
observation missions by UAV -Unmanned Air Vehicles-, etc.) are generally com-
plex since they not only manage a lot of tasks simultaneously but also rely
upon complex algorithms whose duration cannot always be predicted (Artificial
Intelligence approaches are more and more often necessary to implement the
requirements of the new mission systems in preparation). To explore the various
possible ways to make these systems evolve from a multitask to a multiagent
perspective, a powerful implementation language capable of rapid agent model
experimentation and AI algorithms development was needed. The most simple
infrastructure was needed in order to be able to easily merge our agents in an
existing system and prove, without a complete redesign, that the multiagent ap-
proach was an alternative to present practices. That is the reason why ALBA
has been designed as a library rather than a platform as it is most often the case.
Mobility was also a point since it makes it really easier to commission our agents
on changing environments (all agents can be created on one computer -whose
access is easier or devoted to our experiments- and then dynamically moved to
the available computers at the time of the experiment).

Section 2 exposes the main reasons that led to the development of ALBA.
Section 3 gives a general overview of the main aspects of our system that, in a
way, put it apart from the majority of other tools. In section 4 we go thoroughly
into some practical considerations about communications handling and in section
5 we detail a dynamic agent search algorithm. Section 6 explains in depth the
migration protocol and offers some views about agents mobility. In section 7, we
describe some industrial applications already implemented using ALBA. Finally,
sections 8 and 9 draw the main lessons of our proposals and discuss related and
future works.

2 Why a new platform?

Recent years have seen a considerable growth in the number of platforms, with
a current total of over 100 products. It is then legitimate to ask why it has been
necessary for us to develop a new one. The first exigence we had was that the
platform had to allow the commissionning of agents written in Prolog.



2.1 Why Prolog?

Without exhaustively listing all the qualities of Prolog, the main reasons that
naturally led us to use it to implement ALBA and our agents are stated here.

First of all, thanks to its two main mechanisms of unification and resolu-
tion and thanks to its efficiency in manipulating tree structures, Prolog is very
well suited to deal with artificial intelligence problems and has already proved
it in the past. As a declarative language benefiting from the first-order logic
expressiveness, it seems to be the perfect candidate to serve as a basis for new
agent-oriented programming languages. Moreover, Prolog allows to dynamically
modify source code and offers a good environment to implement introspection
capabilities. It is also a good choice for incremental verification of systems which
are constructed with provability in mind.

Another essential argument, in our concern, was the natural efficiency of
Prolog. It permits to develop and test very quickly some new prototypes and
ideas. Its inherent productivity constitutes a great benefit in research activities
without affecting at all the readability or the maintainability of source codes.

Prolog is an interpreted language and so as with Java, the same source code
can run on various platforms and operating systems which is important to fulfill
portability requirements at minimum cost.

Though, it can be argued that the Prolog language is not well equipped to
deal with some specific tasks like modern graphical user interface development
or efficient implementation of naturally imperative algorithms. Solutions can be
found using the bidirectional interfaces to C, C++, Java which are provided with
the most mature Prolog implementations, like SWI-Prolog or SICStus Prolog.

Last but not least, these implementations come with all the functionali-
ties needed for the system to work: TCP/IP sockets, processes handling, In-
put/Output, etc. Finally, they provide advanced debuggers, efficient garbage
collectors, constraint solvers and all the facilities programmers can expect nowa-
days.

2.2 Related Works

Obviously this part is mainly focused on platforms based on or providing logic
programming facilities.

QU Prolog [5] and Ciao Prolog [11] both are Prolog extensions which offer
multithreading and multi-machine execution of Prolog code. Agent intelligent
behaviour programming is done thanks to production rules but other models
can be implemented. Both offer also a blackboard for memory sharing or syn-
chronization.

Jinni [20] is a platform allowing the programming of agents in BinProlog and
Java. Jinni is based on a simple Things, Places, Agents ontology. Things are Pro-
log term, Places are processes running on computers and Agents are collections
of threads executing a set of goals. The threads and the agents can communicate
by using a blackboard and term unification. The threads can migrate between
Places to communicate with the other threads and particularly to accelerate the



resolution. Jinni can be used, for example, to simulate stock market, with the
blackboard allowing agents coordination. Jinni is an interesting platform to pro-
gram Prolog agents but the communication only via blackboards is a limitation
we prefer to avoid in our context.

Eel [6] also deserves a mention since it implements communicating processes
with an original point to point communication through term unification. But we
were looking for asynchronous processes, as we carried out in ALBA

tuProlog [8] might have been a good candidate since its design enforces in-
teraction which is essential when agent implementation is concerned. Its close
integration to Java is also an interesting feature, let alone for programming
man-machine interfaces. The TuCSoN architecture [7] which was developped
from tuProlog is a good example of what we are looking for with ALBA: a high
level programming environment facilitating the implementation of various agent
or coordination models adapted to our needs such as the coordination artifact
for time aware agents presented in [10].

Thus, it looks as if several opportunities were offered for Prolog agent com-
missioning. So, why an industrial as Thales chose exploring new tracks rather
than exploiting the existing solutions ? One of the reason was that not all fea-
tures we had in mind were gathered in a unique platform (mobility, decentralized
agent search) but the main point was our need for a robust Prolog basis such as
the one offered by SICS with Sicstus Prolog and the existence in the company of
a lot of legacy code for artifical intelligence tools (interval constraint propaga-
tion, for example) or applications that we simply could not neglect just for the
sake of agent programming.

When non Prolog platforms implementing mobility are concerned, they gen-
erally rely on imperative object-oriented languages for agents implementation
(and not on Prolog) and are often dedicated to one specific or a limited set of
agent models which was not satisfying. To our knowledge, all mobile agents plat-
form offer a centralization (from a server providing agents management in a same
context or machine, to a central server managing agents in different computers).
In every case, the migration, the agent creation, the communication are done
through a dedicated entity which knows the local agents and its remote equiv-
alents. These principles mainly exist for security reasons because the platforms
are often used in the Web context. Our MAS approach is quite different. Our
main objective is to distribute the agents of a same MAS in several computers in
order to reduce and adapt the system workload throughout the execution. More-
over, we think that robustness and functioning simplicity are essential. So, we
propose to distribute platform specifications and services into the agent through
the ALBA library.



3 Overview of ALBA

3.1 Main features

ALBA is a Prolog library dedicated to the commissioning of agents written in
Prolog. It uses SICStus Prolog which is a mature and complete Prolog imple-
mentation with high performance and industrial qualities.

ALBA offers the basic functionalities expected from a multiagent platform. It
brings the necessary mechanisms for agents creation, execution, communication
and mobility.

The first noticeable point about ALBA is its complete decentralization. It
means that the code implementing the platform functionalities is embedded in
each agent. In this perspective, neither any central program nor any kind of
data centralization are required for it to work. Hence, as it has already been
mentioned, ALBA can better be described as a predicate library rather than as
a platform. Of course, decentralization raises a lot of problems, especially related
to communications handling. A substantial part of this paper is devoted to some
practical proposals to tackle these issues.

ALBA is also about genericity. That means that no assumption is made on
the agent models used. Therefore, ALBA can be used with any kind of agent
models (Agent0[19], AgentSpeak[21], BDI[16], 3APL[12], etc.). Since, at this
stage, the research community has not agreed on a specific universal model which
can be used for any kind of applications, and since it is even doubtful that such a
model exists, it seems to be the best way to proceed when industrial applications
are concerned. Moreover, this approach greatly facilitates experimentations on
various models and on the way they can be combined to reach our expected
goals. In the same range of ideas, no assumption is made on the language used
by the agents to communicate.

Another point of interest is flexibility. As a generic low-level tool, the library
assures, purposely, a restricted range of basic functionalities. It is a core tool that
can be extended at will to provide higher level functionalities, as mentionned in
section 7.

3.2 General Overview

An ALBA agent is constituted of two parts, the embedded library in charge of
all the basic services (messaging, contacts, etc.) and the behavior of the agent
itself that is coded in Prolog. Each agent is an independent Prolog process and
has a unique name that fully identifies it in the system. Therefore, in all the
paper, the agents will be represented as in figure 1. All agents can communicate
via asynchronous messages.

ALBA has been developed in a multi-machine perspective and, of course,
our systems can be distributed on a pool of computers over a network. For
the remaining of the paper, the term computer will refer to any computer in a
network where an ALBA daemon is running. These daemons are in charge of
executing on remote machines, the creation or migration functions called by an



Fig. 1. An ALBA Agent

agent and the associated data transfers (see section 6 for more details). Therefore,
agents can be created locally or on remote computers and can migrate from a
computer to another. A general overview is presented in figure 2.

Fig. 2. ALBA Overview

3.3 Towards Distributed Modularity

In ALBA, agents can be created from what we call proto-agents using the predi-
cate create agent(+Host, +Name, ?Param, +Contacts, +ProtoAgent, -FullName)1.
Proto-agents are to agents what classes are to objects in the object-oriented
paradigm. Each agent running in a MAS can be viewed as a specific instance of a
proto-agent. For the sake of reusability, proto-agents aim to be as generic as pos-
sible. They consist of the Prolog source code describing the “to-be-instantiated”
agents behavior and of any resource files they could need. Each proto-agent
is stored as a directory or as an archive file and takes its name from its corre-
sponding directory name or filename. Each newly created agent is given a specific
workspace initialized from the content of the proto-agent it is based on. When an
agent creates another agent from a proto-agent A, ALBA automatically searches
A following the order given in its proto-agent path, querying remote daemons
when necessary. The proto-agent is then automatically retrieved to localhost as
a compressed archive and can be used to launch the new agent.

1 A few predicates of the library are introduced but generally parameters are not
described for being quite self-explicit



To accomplish their tasks, agents may need specific libraries, for exam-
ple libraries dedicated to image analysis, to interval computations, etc. Includ-
ing these generic libraries in each proto-agent would be costly and nearly un-
maintainable, that is why ALBA use quite the same mechanisms as for proto-
agents to automatically find and retrieve required libraries which are shared
at MAS level. To do so, ALBA offers the following predicates which are en-
capsulations of their well-known Prolog homologues: alba consult(+LibName),
alba compile(+LibName), alba use module(+LibName).

Now, let us suppose we want to run a MAS to simulate a mission with
boats and planes using various libraries. We have nothing in our machine but
we know the address of remote servers hosting required data. Provided we just
have a daemon running on our computer, we can build a complete customized
MAS using proto-agents and libraries coming from various machines, serving as
distributed banks of generic agents and resources.

4 Communications Handling

Communications handling is a hard task that, at low level, needs some knowledge
about network protocols that seems far from intelligent agents problematics.
However, communication is a fundamental aspect of multiagent paradigm, as
being the only way for cognitive agents to share information. Indeed, it is by
prohibiting the usage of complex sharing methods (shared memory, semaphores,
etc.) that MAS can pretend to reduce the structural complexity of systems.

We have seen that agents are able to communicate asynchronously through
messages. In this view, ALBA offers direct point-to-point communications with
send message(+Message, +Recipient) predicate. Communications relied on TCP/IP
sockets which seem inappropriate for local communications but is required for
remote transmissions.

Agents are identified by their names, whose uniqueness is ensured by ALBA
using the following naming scheme, which only exploits information locally saved
in each agent: AgentName/SonName/etc. Note that names are stored and ma-
nipulated as Prolog terms, allowing us to deduce immediately from an agent’s
name the identity of all his ancestors. Another interesting feature of this naming
scheme is that it allows the merging of completely distinct MAS into a single
one. Indeed, provided that the seed agents of each MAS to merge have a unique
name -which is not a severe requirement-, it is clear that there won’t be any
name clash issues. Therefore, relying on the search method described in section
5, merging two distinct MAS can be done by simply linking one agent from each
MAS to each other.

Exchanged messages are Prolog terms which is extremely convenient when it
comes to parsing and analyzing their contents. No other assumptions are made
about messages contents and, of course, every classical communication languages
(KQML[13], FIPA ACL, etc.) can be used.

ALBA users can build up their systems on the following postulate: for the
same pair of agents, messages ordering is preserved. More formally, if m1 and



m2 are two messages sent from A to B, m1 being transmitted before m2, then
B will receive m1 before m2. This is ensured by TCP protocol and the library
internal mechanisms.

Error treatment is an important aspect of communications handling. ALBA
acts as a layer on top of TCP/IP to manage every detail related to commu-
nications, such as connections, transmissions, proper disconnections and so on.
It also has to deal with any potential low-level errors that may occur. Agent
programmers work at a higher abstraction level and must not have to be preoc-
cupied about these kind of considerations. Communications handling in ALBA,
can be compared to ordinary postal service. It is, therefore, up to agents to
prevent any possible loss of essential information thanks to specific protocols.
For example, ALBA comes with acknowledgments facilities, which can be used
for synchronous communications if it becomes necessary. These principles are
of course compliant with autonomy principles described in [2], as autonomous
agents can decide not to answer to some messages and, therefore, agents need
to be able to react accordingly if they do not receive expected answers. Thus,
thinking agents in term of autonomous entities, constitutes a way to improve
fault tolerance at the source.

It can be useful for an agent to use some appropriate messages treatment
strategies. It becomes nearly inevitable for very solicited agents so as to rationally
handle the mass of received messages. Strategies can give the precedence to some
specific senders or to a given kind of messages that need to be processed in pri-
ority. That is why, in addition to the classical read message(-Message, ?Sender,

+Timeout) routine, ALBA provides the predicate read all messages(-Messages,

?Senders) that returns all the messages available at call time. It is possible to
instantiate the variable Senders in order to get only the messages sent by given
senders. Note that an agent messagebox is stored in memory using Prolog terms,
allowing to easily handle advanced requests by unification.

5 Search Method

5.1 Introduction

All agents of the system are identified by their unique name. This is the only
information accessible to the end user of ALBA. All communications being based
on TCP/IP sockets, the library has to provide internal mechanisms to recover
the IP address and port number of an agent from its name. In order to achieve
this goal, we refused to use any kind of server names or matchmaker agent (re-
spectively white and yellow pages) or, more generally, to assign this task to
any form of central system that would constitute potential drawbacks of our
applications. Relying on a centralized approach would affect the robustness of
ALBA because a single fault in this central organ could paralyse all the system.
Moreover, excessive centralization constitutes a major bottleneck, as the central
entity has to stay aware of every changes occurring in the MAS (agent creation,
migration, etc.) and to answer all the queries of the agents willing to commu-
nicate. Hence, the central entity has to deal with a very important amount of



messages with an overload risk. These issues can be partially solved using many
matchmaker entities communicating with each other, ensuring the integrity of
their names database and implementing mechanisms of data redundancy to pre-
vent the system to fully depend on the existence of a single entity. This solution
has, though, an important cost and that is the reason why we have chosen to
explore alternative ways.

To address this problem2, we aim at taking the best advantage of the natural
distributivity of MAS and to exploit information stored locally in each agent.
The problem can be viewed as a graph search problem where nodes represent
agents and where arcs stand for connections between agents, i.e. an agent A is
linked to an agent B if and only if A knows the correct IP address and port of B
at a given time T. The problem is more complex than a traditional graph search
because, here, the topology of the graph, since it is a model of the MAS, can
evolve dynamically during the search. It is also important to understand that,
even if agent A has some information about B, we cannot be sure that these
data are up-to-date.

Therefore, the search algorithm need to be able to successfully retrieve agents
in an unstable graph whose arcs may be wrong, by propagating a wave of mes-
sages in the MAS. It needs to fulfill the three following objectives :

1. the wave of messages generated by the algorithm must come to an end, no
matter what is the configuration of the MAS

2. if agent A searches agent B, which is in the same connected component, the
algorithm must be able to find B

3. the amount of messages sent during the search need to be limited as much
as possible

A Naive Algorithm The general idea is very simple. When agent A wants to
communicate with agent B and does not know how to reach it, A sends a search
message to all its contacts. The search message contains: some necessary infor-
mation to reach the search initiator (SI), a blacklist of already visited contacts
(BL) and the name of the target agent (TA). Of course the algorithm works
and fulfill the two first objectives but generates too many messages to be used.
Indeed, in the worst case, i.e. N agents interconnected (complete graph) with a
search for an agent absent from the MAS, it is straightforward to see that the
algorithm induces a wave of (N − 1)! messages.

5.2 An Improved Algorithm

The idea, to limit the number of sent messages, is to exploit local information
stored in each agent, i.e. its contacts, in order to anticipate a step forward. Thus,
when an agent receives a search message it adds itself and all its non already
visited contacts in the blacklist. Unfortunately, this algorithm does not ensure

2 Particularly, we will describe our distributed solution to replace centralized “white
pages”



anymore that an agent will find any agent in its connected component. It is
illustrated in figure 3.

Fig. 3. Error in search

In this example, A wants to reach agent D. A sends a search message to its
contacts B and C with A, B and C in the BL. A cannot effectively send the
message to C because it has outdated localization information concerning C.
Note that B holds updated position of C and could reach it, but of course it
does not even try to do so because C is in the BL. Even if D and A belong to
the same connected component, A cannot find D anymore.

It is therefore necessary to add a local error treatment mechanism. We could
use an automatic ping pong procedure to ensure that each contacts are reachable
before sending them the search message. It is not reliable and too heavy to be
used in large MAS, especially when it appears that, in the majority of cases,
there won’t be any error to handle. That’s why an alternative method has been
proposed, described in algorithm 1, which we call Waves-Search algorithm.

In this method, agents automatically take into account communication errors
and resend their search messages with an appropriate corrected blacklist.

This algorithm works well for our applications which involve a reasonable
number of agents organized in favorable interconnected topologies. It is also
important to understand that the algorithm is launched only a limited number
of times to interconnect two agents at first or as an alternative procedure if an
agent has lost some contacts. Though, it suffers some scalability issues and would
not be suitable for massive MAS with all possible topologies. It can be viewed
as a first step towards a fully effective dynamic search method in a decentralized
environment.

The problem is very close to search processes in Gnutella-like unstructured
and fully decentralized peer to peer networks and to classical application layer
routing protocols, which are active fields of research [9]. A possible improvement
would be to adapt Distributed Hash Table based methods like Chord, CAN,
Pastry or mobile ad hoc network routing protocols like DSR or AODV to the
specificities of the problem. It may imply to soften the second objective offering
only guarantees in probability to find an existing agent. Another very promis-
ing approach would be to exploit the agents genealogy, which can be deduced
from agents name, in order to direct the search very quickly and with bound
guarantees on the number of messages sent for all topologies.



Algorithm 1 Waves-Search algorithm

1: if OwnName = TA then ⊲ I am the searched agent!
2: Get in contact with SI
3: else

4: if TA ∈ OwnContacts and search message successfully sent to TA then

5: return

6: end if

7: Forwards ← OwnContacts − BL
8: UpdatedBL ← BL + OwnName + Forwards
9: for all Agent ∈ Forwards do

10: Send updated message with UpdatedBL to Agent
11: end for

12: Errors ← List of agents in Forwards that could not receive the search message
13: if Errors 6= ∅ then

14: NewForwards ← Forwards − Errors
15: NewUpdatedBL ← UpdateBL − Errors
16: for all Agent ∈ NewForwards do

17: Send updated message with NewUpdatedBL to Agent
18: end for

19: end if

20: end if

6 Migration Protocol

Mobility, i.e. the support to the network transport of agents code and execution
state, has become one of the fundamental feature any modern platform should
provide. Mobile agents advantages, which are stressed in several papers, such
as [3, 14], explain this imperative requirement. Listing only a few ones, agents
mobility allows network traffic reduction, dynamic MAS reconfiguration, load
balancing and is of great support to improve scalability and fault-tolerance.
This section describes the migration protocol used by ALBA and discusses its
main characteristics.

6.1 Description

At any time, agents can use the predicate migrate(+Host), to keep on with
their work on any remote computer. Note that ALBA provides only the nec-
essary mechanisms for agents mobility. Each agent chooses its target host and
the best moment to migrate relying upon migration strategies established by
the developer. This is of course reasonable considering that these strategies are
application-dependant and stand at a higher abstraction level than ALBA. To
honor the migration task, ALBA proceeds as described in figure 4.

1. The migrant wants to move to a remote host.
2. A clone of the migrant is created on the remote host.
3. The clone creates a connection with the migrant contacts, the migrant stops

its activity and only forwards messages to its clone.



Fig. 4. Migration Protocol

4. The connections between the migrant and his old contacts are cut immedi-
ately.

5. The migrant process destroys itself, the clone has replaced it on the remote
target.

Now that a general overview of the migration protocol has been given, it is
necessary to describe what happens in each agent playing a part in the procedure.

From the migrant perspective The migrant first creates a clone of itself on
the target computer. In practice, the workspace of the migrant is transferred, by
the ALBA layer in the migrant, to the remote ALBA daemon as a compressed
archive file and the remote daemon launches the clone agent. The migrant reads
all its pending messages and transfers all its messages and ALBA related internal
data, such as its contacts, directly to its clone. All messages received during this
phase are forwarded by the migrant to the clone. Note that all the forwarded
messages are encapsulated properly to inform the clone of its real senders. Then,
the migrant immediately sends an end of migration message to the clone and
closes itself.

From the clone perspective The clone is launched from the same source
code as the migrant. It first connects to its father, i.e. the migrant, which is the
only agent of the system aware of its existence. As described in section 4, its



internal name has the form migrant name/clone(X). It then initializes its internal
data with those provided by the migrant. As soon as it receives migrant contacts
information, it sends them a special internal update message (UM) stating that it
is the new agent named migrant name. This message is automatically interpreted
by the ALBA layer which just replaces, in each contact, migrant information with
clone address and port. Upon the reception of the end of migration message from
the migrant, the clone changes its internal name to migrant name and calls a
predicate restart that has to be written by the agent developer and define the
first behavior of the restarted agent.

From the migrant contacts perspective From the migrant contacts every-
thing is transparent. There is only a hidden substitution in their internal data
from the migrant address and port to the clone address and port.

6.2 Discussion

One of the main interest of this protocol is that the migrant and its clone are
running together during a very short period of time and that no messages are
lost during this transitory phase. Indeed, if one of the migrant contact sends it
a message when it is still running, it will forward it to the clone. If the migrant
is already closed but the contact has not already received the special internal
update message (UM), the message will be queued and sent as soon as the clone
contacts it.

At first, it seems that ALBA provides only weak mobility because no migra-
tion of execution state is involved, the migrating agents are explicitly restarted
at their destination. However, ALBA comes with the two following routines:
put into luggage(+Name, +Value) and get from luggage(+Name, ?Value), allow-
ing to save and restore data in a specific part of the memory which is automat-
ically transferred during a migration. These predicates are callable at any time
during agent execution and represent a convenient way to manage what can be
viewed as a migration luggage. We currently use a model of agent which can be
fully described by its internal data. Thus, using their migration luggage properly,
agents are able to completely resume their execution after a migration, which
becomes a transparent procedure. Therefore the migration strength depends of
the agent model which is used, the library offers strong migration at agent level if
the model used is migration compliant, i.e. if the agent behavior can be resumed
by the sole knowledge of its luggage.

7 Applications

ALBA has already been used in various applications of our department. We
mention here only one of them: Interloc. Interloc is a software for mobile marine
targets localization. In Interloc, planes seek to detect boats, but in a passive
way, i.e. without using their own radar, but by exploiting the targets emissions
to deduce their positions. The system is implemented by a MAS. Each boat is



represented by an agent, just as each plane. Another agent manages the graphi-
cal interface, another one makes measures (agent which introduces noise on the
measures for a realistic simulation) and an agent by plane is in charge of local-
ization computations. Therefore, a substantial number of agents (10 to 25) are to
run and interact at the same time and, Interloc was a perfect testbed application
to validate ALBA and especially its migration protocol. Indeed, considering the
significant number of agents running simultaneously, migration was interesting
for load balancing purposes.

As explained, as a low level tool, ALBA provides purposely a very limited
set of functionalities. Thus, to carry out these applications, a lot of useful tools
have been developed on top of it, which proved the flexibility and extensibility
of the library. For instance, an agent was developed to facilitate human agents
interactions with active MAS via a graphical interface. It mainly allows to create
or kill agents and comes with a console to easily communicate with running
agents by sending them messages.

ALBA has been well tested in practice and has proved to be efficient in
achieving its tasks. The library and its related tools are now mature enough to
be used in larger scale industrial applications.

8 Future Works

Even though, ALBA is already quite functional, several aspects have to be im-
proved and new functionalities need to be added.

The increasing development of agents mobility and the distribution of MAS
over heterogeneous networks raised the question of security. Therefore, to be
deployed in untrustworthy environments, ALBA needs to support cryptography
mechanisms to provide communications encryption and agents authentication.
In the same perspective, all manipulated archives need to be encrypted too.

In our applications, agents are to interact with entities that are not really
agents but just some runtime devices providing a specific kind of function or ser-
vice. We have, for example, an entity that is used by agents to display graphical
interfaces. This is not a common agent, it does not load ALBA and cannot fully
interact with other agents. Therefore, ALBA needs to properly handle this kind
of entities introduced in [17], as a first-class abstraction in MAS under the name
“artifacts”.

We have also begun to develop a generic library allowing to define events
linked with any chosen predicates. Any programmer can use these predefined
events to inject his own code on specific points of interest. The library relies
on Prolog introspection mechanisms. It would allow to easily customize ALBA
with external files and without touching to its core. It could also be used to
dynamically control agents as in [4]. More advanced studies are to be made to
explore the potential benefits of this library.



9 Conclusion

We have presented in this paper a generic Prolog library called ALBA, dedicated
to MAS deployment. We described thoroughly its architecture and implemen-
tation with an emphasis for the technical choices made to provide robustness,
decentralization, flexibility and modularity. With a strong respect for these fea-
tures, we introduced an innovative migration protocol, an agent research algo-
rithm and some considerations about communications handling. We also high-
lighted some ideas to achieve a distributed modularity of agents. Relying upon
the described mechanisms, it is already possible to merge completely distinct
MAS, to tackle on-line repairing of agents or to stop any agent for some time
and relaunch it later, minimizing the impact on the rest of the system. Part of
our current work is focused on these experimentations, on ALBA improvements
and on its applications.

Now that we have a usable library dedicated to MAS commissioning, our
main concern is also to explore the best ways to express autonomous agents
behavior. We now aim to propose a new declarative agent-oriented programming
language built on top of Prolog.

References

1. John Langshaw Austin. How to Do Things with Words. Clarendon Press, 1962.

2. K.S. Barber and C.E. Martin. Agent Autonomy : Specification, Measurement and
Dynamic Adjustement. In Proc. of the Autonomy Control Software workshop at
Autonomous Agents’99, pages 8–15, May 1999.

3. David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile Agents: Are They
a Good Idea? Technical report, IBM Research Division Report, 1995.

4. Caroline Chopinaud, Amal El Fallah Seghrouchni, and Patrick Taillibert. Dynamic
Self-Control of Autonomous Agents. In Proc. of the Third International Workshop
on Programming Multi-Agent Systems’05, pages 13–27, July 2005.

5. K. Clark, P.J. Robinson, and R. Hagen. Multithreading and message communica-
tion in Qu-prolog. Theory and Practice of Logic Programming, 1(3), 2001.

6. Torbjrn S. Dahl. The eel programming language and internal concurrency in logic
agents. In the Proceedings of the Workshop on Multi-Agent Systems in Logic Pro-
gramming, (ICLP’99), Las Cruces, New Mexico, November 29 - December 4 1999.

7. Enrico Denti and Andrea Omicini. From tuple spaces to tuple centers. Sci. Comput.
Program., 41:277–294, 2001.

8. Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-paradigm java-prolog
integration in tuprolog. Sci. Comput. Program., 57(2):217–250, 2005.

9. Gang Ding and Bharat K. Bhargava. Peer-to-peer file-sharing over mobile ad hoc
networks. In PerCom Workshops, pages 104–108, 2004.

10. Cédric Dinont, Emmanuel Druon, Philippe Mathieu, and Patrick Taillibert. Arti-
facts for time-aware agents. In Fifth Int. conf. on Autonomous Agents and Multi-
agents Systems (AAMAS 06), Hakodate, Japan, 8 - 12 May 2006.

11. Daniel Cabeza Gras and Manuel V. Hermenegildo. The ciao module system: A
new module system for prolog. Electr. Notes Theor. Comput. Sci., 30(3), 1999.



12. Koen V. Hindriks, Frank S. De Boer, Wiebe Van der Hoek, and John-Jules Ch.
Meyer. Agent Programming in 3APL. Autonomous Agents and Multi-Agent Sys-
tems, 2(4):357–401, 1999.

13. Yannis Labrou and Tim Finin. A Proposal for a New KQML Specification. Tech-
nical Report TR CS-97-03, Computer Science and Electrical Engineering Depart-
ment, University of Maryland Baltimore County, February 1997.

14. Danny B. Lange and Mitsuru Oshima. Seven Good Reasons for Mobile Agents.
Commun. ACM, 42(3):88–89, 1999.

15. James Odell. Objects and Agents Compared. Journal of object technology, 1(1):41–
53, 2002.

16. A. S. Rao and M. P. Georgeff. BDI-Agents: from Theory to Practice. In Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.

17. Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming MAS with
Artifacts. In Proc. of the Third International Workshop on Programming Multi-
Agent Systems’05, pages 163–178, July 2005.

18. Pierre-Michel Ricordel and Yves Demazeau. From Analysis to Deployment: A
Multi-agent Platform Survey. LNCS, 1972:93–105, 2001.

19. Yoav Shoam. Agent Oriented Programming. Artificial Intelligence, (60):51–92,
1993.

20. Paul Tarau. Jinni: Intelligent mobile agent programming at the intersection of java
and prolog. In Proceedings of PAAM’99, London, 1999.

21. D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a Concurrent Agent-
Oriented Language. In M. Wooldridge and N. R. Jennings, editors, Intelligent
Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages 386–
402. Springer-Verlag: Heidelberg, Germany, 1995.


